If you see any Dead link in Any Post...
Then please report immediately on our FACEBOOK Account or COMMENT Below of that Post...
It'll Help us to maintain our Blog and assurance of 100% Original Links.
Thanks... ADMIN...

November 12, 2014

Engineering Electromagnetics by Hayt and Buck 8th Edition

Engineering Electromegnatics
Engineering Electromegnatics
Book Name: Engineering Electromagnetics
Author Name:
William H. Hayt Jr.
John A. Buck
Edition: 8th Edition
Type: Ebook

Download Ebook here.
Download 

Its in PDF format if you don't have Adobe Reader then please 1st download it.
Download Adobe Reader

Details:
Engineering Electromagnetics is a "classic" book that has been updated for electromagnetics in today's world. It is designed for introductory courses in electromagnetics or electromagnetic field theory at the junior-level, but can also be used as a professional reference. This widely respected book stresses fundamentals and problem solving and discusses the material in an understandable, readable way. Numerous illustrations and analogies are provided to the aid the reader in grasping difficult concepts. In addition, independent learning is facilitated by the presence of many examples and problems.
This site contains helpful resources for instructors and students. If you click on the Information Center link on the left, you will find the following: About the Authors, Book Preface, Book Walkthrough, Table of Contents, and PageOut (a useful tool creating an instructor's website).

October 9, 2014

Fundamentals of Electric Circuits by Charles Alexander and Matthew Sadiku Fifth Edition

Fundamentals of Electric Circuits by Charles Alexander and Matthew Sadiku 5th Edition
Fundamentals of Electric Circuits
Book Name: Fundamentals of Electric Circuits
Author Name:
Charles Alexander
Matthew N. O. Sadiku
Edition: Fifth Edition (5th Edition)
Type: Ebook (23.90 MB)

Download Ebook here.
Download

Its in PDF format if you don't have Adobe Reader then please 1st download it.
Download Adobe Reader  

Alexander and Sadiku's third edition of Fundamentals of Electric Circuits continues in the spirit of its successful previous editions, with the objective of presenting circuit analysis in a manner that is clearer, more interesting, and easier to understand than the competition. Students are introduced to the sound, six-step problem solving methodology in chapter one, and are consistently made to apply and practice these steps in practice problems and homework problems throughout the text and online using the KCIDE for Circuits software.
A balance of theory, worked examples and extended examples, practice problems, and real-world applications, combined with over 300 new homework problems for the third edition and robust media offerings, renders the third edition the most comprehensive and student-friendly approach to linear circuit analysis.

October 8, 2014

Solution Manual of Signals and Systems by Oppenheim 2nd Edition

Signals and Systems by Oppenheim
Signals and Systems
by Oppenheim
Book Name: Signals & Systems
Author Name:
Alan V. Oppenheim
Alan S. Willsky
Edition: Second Edition, (August 16, 1996)
Publisher: Prentice Hall
Pages: 116 pages
Size: 22.4 MB
ISBN-10: 0138147574
ISBN-13: 978-0138147570
Type: Soltuon Manual

Download Soltuon Manual here.
Download 

Its in PDF format if you don't have Adobe Reader then please 1st download it.
Download Adobe Reader 
Give A Comment
The second edition of this well-known and highly regarded text can be used as the basis for a one- or two-semester undergraduate course in signals and linear systems theory and applications. Topics include basic signals and systems concepts, linear time-invariant (LTI) systems, Fourier representations of continuous-time and discrete-time signals, the CT and DT Fourier transforms, and time- and frequency-domain analysis methods. The author emphasizes applications of the theory through numerous examples in filtering, sampling, communications, and feedback. The parallel development of continuous-time and discrete-time frequency domain methods allows the reader to apply insights and intuition across the two domains. It also facilitates a deeper understanding of the material by bringing into focus the similarities and differences between the two domains. The text also includes introductory chapters on communication systems and control theory. This book assumes that you have a background in calculus as well as exposure to complex numbers and elementary differential equations. Because of its thoroughness and unhurried pace, this text is highly recommended for students and those interested in self-study. 

Product Description
This comprehensive book of signals and systems develops continuous-time and discrete-time concepts/methods. Highly regarded for its intellectual quality, it provides a solid foundation and life-long reference for anyone studying the most important methods or modern signal and system analysis.

Table of Contents
(NOTE: Each chapter begins with an Introduction and concludes with a Summary.)

1. Signals and Systems. 
Continuous-Time and Discrete-Time Signals. Transformations of the Independent Variable. Exponential and Sinusoidal Signals. The Unit Impulse and Unit Step Functions. Continuous-Time and Discrete-Time Systems. Basic System Properties.

2. Linear Time-Invariant Systems. 
Discrete-Time LTI Systems: The Convolution Sum. Continuous-Time LTI Systems: The Convolution Integral. Properties of Linear Time-Invariant Systems. Causal LTI Systems Described by Differential and Difference Equations. Singularity Functions.

3. Fourier Series Representation of Periodic Signals. 
A Historical Perspective. The Response of LTI Systems to Complex Exponentials. Fourier Series Representation of Continuous-Time Periodic Signals. Convergence of the Fourier Series. Properties of Continuous-Time Fourier Series. Fourier Series Representation of Discrete-Time Periodic Signals. Properties of Discrete-Time Fourier Series. Fourier Series and LTI Systems. Filtering. Examples of Continuous-Time Filters Described by Differential Equations. Examples of Discrete-Time Filters Described by Difference Equations.

4. The Continuous-Time Fourier Transform. 
Representation of Aperiodic Signals: The Continuous-Time Fourier Transform. The Fourier Transform for Periodic Signals. Properties of the Continuous-Time Fourier Transform. The Convolution Property. The Multiplication Property. Tables of Fourier Properties and Basic Fourier Transform Pairs. Systems Characterized by Linear Constant-Coefficient Differential Equations.

5. The Discrete-Time Fourier Transform. 
Representation of Aperiodic Signals: The Discrete-Time Fourier Transform. The Fourier Transform for Periodic Signals. Properties of the Discrete-Time Fourier Transform. The Convolution Property. The Multiplication Property. Tables of Fourier Transform Properties and Basic Fourier Transform Pairs. Duality. Systems Characterized by Linear Constant-Coefficient Difference Equations.

6. Time- and Frequency Characterization of Signals and Systems. 
The Magnitude-Phase Representation of the Fourier Transform. The Magnitude-Phase Representation of the Frequency Response of LTI Systems. Time-Domain Properties of Ideal Frequency-Selective Filters. Time- Domain and Frequency-Domain Aspects of Nonideal Filters. First-Order and Second-Order Continuous-Time Systems. First-Order and Second-Order Discrete-Time Systems. Examples of Time- and Frequency-Domain Analysis of Systems.

7. Sampling. 
Representation of a Continuous-Time Signal by Its Samples: The Sampling Theorem. Reconstruction of a Signal from Its Samples Using Interpolation. The Effect of Under sampling: Aliasing. Discrete-Time Processing of Continuous-Time Signals. Sampling of Discrete-Time Signals.

8. Communication Systems. 
Complex Exponential and Sinusoidal Amplitude Modulation. Demodulation for Sinusoidal AM. Frequency-Division Multiplexing. Single-Sideband Sinusoidal Amplitude Modulation. Amplitude Modulation with a Pulse-Train Carrier. Pulse-Amplitude Modulation. Sinusoidal Frequency Modulation. Discrete-Time Modulation.

9. The Laplace Transform. 
The Laplace Transform. The Region of Convergence for Laplace Transforms. The Inverse Laplace Transform. Geometric Evaluation of the Fourier Transform from the Pole-Zero Plot. Properties of the Laplace Transform. Some Laplace Transform Pairs. Analysis and Characterization of LTI Systems Using the Laplace Transform. System Function Algebra and Block Diagram Representations. The Unilateral Laplace Transform.

10. The Z-Transform. 
The z-Transform. The Region of Convergence for the z-Transform. The Inverse z-Transform. Geometric Evaluation of the Fourier Transform from the Pole-Zero Plot. Properties of the z-Transform. Some Common z-Transform Pairs. Analysis and Characterization of LTI Systems Using z-Transforms. System Function Algebra and Block Diagram Representations. The Unilateral z-Transforms.

11. Linear Feedback Systems. 
Linear Feedback Systems. Some Applications and Consequences of Feedback. Root-Locus Analysis of Linear Feedback Systems. The Nyquist Stability Criterion. Gain and Phase Margins.

Appendix: Partial-Fraction Expansion. 
Bibliography. 
Answers. 
Index. 

October 6, 2014

Engineering Electromagnetics by Hayt and Buck 7th Edition

Engineering Electromagnetics
Engineering Electromagnetics
Book Name: Engineering Electromagnetics
Author Name:
William H. Hayt Jr.
John A. Buck
Edition: 7th Edition
Type: Ebook

Download Ebook here.
Download 

Its in PDF format if you don't have Adobe Reader then please 1st download it.
Download Adobe Reader

Download 8th edition of Engineering Electromagnetics
http://ieee-books.blogspot.com/2012/11/engineering-electromagnetics-by-hayt.html

Details:
Engineering Electromagnetics is a "classic" book that has been updated for electromagnetics in today's world. It is designed for introductory courses in electromagnetics or electromagnetic field theory at the junior-level, but can also be used as a professional reference. This widely respected book stresses fundamentals and problem solving and discusses the material in an understandable, readable way. Numerous illustrations and analogies are provided to the aid the reader in grasping difficult concepts. In addition, independent learning is facilitated by the presence of many examples and problems.
This site contains helpful resources for instructors and students. If you click on the Information Center link on the left, you will find the following: About the Authors, Book Preface, Book Walkthrough, Table of Contents, and PageOut (a useful tool creating an instructor's website).

October 1, 2014

Fundamentals of Electric Circuits by Charles Alexander 4th Edition

Fundamentals of Electric Circuits by Charles Alexander
Fundamentals of Electric Circuits
Book Name: Fundamentals of Electric Circuits
Author Name:
Charles Alexander
Matthew N. O. Sadiku
Edition: Fifth Edition (5th Edition)
Type: Ebook (23.90 MB)

Download Ebook here.
Download

Its in PDF format if you don't have Adobe Reader then please 1st download it.
Download Adobe Reader  

Alexander and Sadiku's third edition of Fundamentals of Electric Circuits continues in the spirit of its successful previous editions, with the objective of presenting circuit analysis in a manner that is clearer, more interesting, and easier to understand than the competition. Students are introduced to the sound, six-step problem solving methodology in chapter one, and are consistently made to apply and practice these steps in practice problems and homework problems throughout the text and online using the KCIDE for Circuits software.
A balance of theory, worked examples and extended examples, practice problems, and real-world applications, combined with over 300 new homework problems for the third edition and robust media offerings, renders the third edition the most comprehensive and student-friendly approach to linear circuit analysis.