If you see any Dead link in Any Post...
Then please report immediately on our FACEBOOK Account or COMMENT Below of that Post...
It'll Help us to maintain our Blog and assurance of 100% Original Links.
Thanks... ADMIN...
Showing posts with label Mathematics. Show all posts
Showing posts with label Mathematics. Show all posts

February 12, 2014

Solution Manual for Probability Statistics and Random Processes for Electrical Engineering by Alberto Leon-Garcia

Solution Manual for Probability
Statistics and Random
Processes for Electrical
Engineering
Book Name: Probability Statistics and Random Processes for Electrical Engineering
Author Name: Alberto Leon-Garcia
Edition: 4th Edition
Type: Solution Manual
Pages: 42 Parts
Size: 8.32 MB (.rar File)

Download Solution Manual here.
Download 

Its in PDF format if you don't have Adobe Reader then please 1st download it.
Download Adobe Reader 

About Author:
This is the standard textbook for courses on probability and statistics, not substantially updated. While helping students to develop their problem-solving skills, the author motivates students with practical applications from various areas of ECE that demonstrate the relevance of probability theory to engineering practice. Included are chapter overviews, summaries, checklists of important terms, annotated references, and a wide selection of fully worked-out real-world examples. In this edition, the Computer Methods sections have been updated and substantially enhanced and new problems have been added.

April 13, 2013

Solution Manual of Thomas Calculus 12th Edition

Thomas' Calculus
Thomas' Calculus
Book Name: Thomas' Calculus
Author Name: Maurice D. Weir, Joel R. Hass, Frank R. Giordano
Edition: 12th Edition
ISBN: 0321185587, 9780321185587
Publishers: Addison-Wesley Longman, Incorporated, 2005
Type: Solution Manual

Download Solution Manual here.
Download 

Its in PDF format if you don't have Adobe Reader then please 1st download it.
Download Adobe Reader 
Any issue or confusion??? Drop a comment below in comment box or contact us on Facebook.


To Prevent Mediafire Ads Download AdBlock Plus
For ChromeInstall
For MozillaInstall 
Table of Contents:
1. Preliminaries:
Real Numbers and the Real Line.
Lines, Circles, and Parabolas.
Functions and Their Graphs.
Identifying Functions; Mathematical Models.
Combining Functions; Shifting and Scaling Graphs.
Trigonometric Functions.
Graphing with Calculators and Computers.

2. Limits and Derivatives:
Rates of Change and Limits.
Calculating Limits Using the Limit Laws.
Precise Definition of a Limit.
One-Sided Limits and Limits at Infinity.
Infinite Limits and Vertical Asymptotes.
Continuity.
Tangents and Derivatives.

3. Differentiation:
The Derivative as a Function.
Differentiation Rules.
The Derivative as a Rate of Change.
Derivatives of Trigonometric Functions.
The Chain Rule and Parametric Equations.
Implicit Differentiation.
Related Rates.
Linearization and Differentials.

4. Applications of Derivatives:
Extreme Values of Functions.
The Mean Value Theorem.
Monotonic Functions and the First Derivative Test.
Concavity and Curve Sketching.
Applied Optimization Problems.
Indeterminate Forms and L'Hopital's Rule.
Newton's Method.
Antiderivatives.

5. Integration:
Estimating with Finite Sums.
Sigma Notation and Limits of Finite Sums.
The Definite Integral.
The Fundamental Theorem of Calculus.
Indefinite Integrals and the Substitution Rule.
Substitution and Area Between Curves.

6. Applications of Definite Integrals:
Volumes by Slicing and Rotation About an Axis.
Volumes by Cylindrical Shells.
Lengths of Plane Curves.
Moments and Centers of Mass.
Areas of Surfaces of Revolution and The Theorems of Pappus.
Work.
Fluid Pressures and Forces.

7. Transcendental Functions:
Inverse Functions and their Derivatives.
Natural Logarithms.
The Exponential Function.
ax and loga x.
Exponential Growth and Decay.
Relative Rates of Growth.
Inverse Trigonometric Functions.
Hyperbolic Functions.

8. Techniques of Integration:
Basic Integration Formulas.
Integration by Parts.
Integration of Rational Functions by Partial Fractions.
Trigonometric Integrals.
Trigonometric Substitutions.
Integral Tables and Computer Algebra Systems.
Numerical Integration.
Improper Integrals.

9. Further Applications of Integration:
Slope Fields and Separable Differential Equations.
First-Order Linear Differential Equations.
Euler's Method.
Graphical Solutions of Autonomous Equations.
Applications of First-Order Differential Equations.

10. Conic Sections and Polar Coordinates:
Conic Sections and Quadratic Equations .
Classifying Conic Sections by Eccentricity.
Quadratic Equations and Rotations.
Conics and Parametric Equations; The Cycloid.
Polar Coordinates .
Graphing in Polar Coordinates.
Area and Lengths in Polar Coordinates.
Conic Sections in Polar Coordinates.

11. Infinite Sequences and Series:
Sequences.
Infinite Series.
The Integral Test.
Comparison Tests.
The Ratio and Root Tests.
Alternating Series, Absolute and Conditional Convergence.
Power Series.
Taylor and Maclaurin Series.
Convergence of Taylor Series; Error Estimates.
Applications of Power Series.
Fourier Series.

12. Vectors and the Geometry of Space:
Three-Dimensional Coordinate Systems.
Vectors.
The Dot Product.
The Cross Product.
Lines and Planes in Space.
Cylinders and Quadric Surfaces .


13. Vector-Valued Functions and Motion in Space:
Vector Functions.
Modeling Projectile Motion.
Arc Length and the Unit Tangent Vector T.
Curvature and the Unit Normal Vector N.
Torsion and the Unit Binormal Vector B.
Planetary Motion and Satellites.

14. Partial Derivatives:
Functions of Several Variables.
Limits and Continuity in Higher Dimensions.
Partial Derivatives.
The Chain Rule.
Directional Derivatives and Gradient Vectors.
Tangent Planes and Differentials.
Extreme Values and Saddle Points.
Lagrange Multipliers.
*Partial Derivatives with Constrained Variables.
Taylor's Formula for Two Variables.

15. Multiple Integrals:
Double Integrals.
Areas, Moments and Centers of Mass*.
Double Integrals in Polar Form.
Triple Integrals in Rectangular Coordinates.
Masses and Moments in Three Dimensions.
Triple Integrals in Cylindrical and Spherical Coordinates.
Substitutions in Multiple Integrals.

16. Integration in Vector Fields:
Line Integrals.
Vector Fields, Work, Circulation, and Flux.
Path Independence, Potential Functions, and Conservative Fields.
Green's Theorem in the Plane.
Surface Area and Surface Integrals.
Parametrized Surfaces.
Stokes' Theorem.
The Divergence Theorem and a Unified Theory.

Appendices:
Mathematical Induction.
Proofs of Limit Theorems.
Commonly Occurring Limits .
Theory of the Real Numbers.
Complex Numbers.
The Distributive Law for Vector Cross Products.
Determinants and Cramer's Rule.
The Mixed Derivative Theorem and the Increment Theorem.
The Area of a Parallelogram's Projection on a Plane.

November 12, 2012

Differential Equations with Boundary Value Problems by G Zill Solution Manual

Differential Equations
Differential Equations with
Boundary value Problems

Book Name: Differential Equations with Boundary -Value Problems
Author Name:
Dennis G.Zill
Micheal R.Cullen
Edition: Fifth Edition
Type: Solution Manual

Download Solution Manual here.
Download 


Its in PDF format if you don't have Adobe Reader then please 1st download it.
Download Adobe Reader

October 15, 2011

Elementary Linear Algebra with Applications by Anton and Rorres 10th Edition

Elementary Linear Algebra with Applications
Elementary Linear Algebra with
 Applications
Book Name: Elementary Linear Algebra with Applications
Author Name: Howard Anton and Chris Rorres
Edition: 10th Edition
Type: Ebook

Download Ebook here.
Download 

Its in PDF format if you don't have Adobe Reader then please 1st download it.
Download Adobe Reader 

Elementary Linear Algebra 10th edition gives an elementary treatment of linear algebra that is suitable for a first course for undergraduate students.  The aim is to present the fundamentals of linear algebra in the clearest possible way; pedagogy is the main consideration.  Calculus is not a prerequisite, but there are clearly labeled exercises and examples (which can be omitted without loss of continuity) for students who have studied calculus.   Technology also is not required, but for those who would like to use MATLAB, Maple, or Mathematics, or calculators with linear algebra capabilities, exercises are included at the ends of chapters that allow for further exploration using those tools.



February 28, 2011

Solution Manual of Calculus by Munem and Foulis

Munem and Foulis
Calculus
Book Name: Calculus
Author Name: Munem & Foulis
Edition: Fourth Edition
File Size: 87.8 MB
Type: Solution Manual

Download Solution Manual here.
Download 

Its in PDF format if you don't have Adobe Reader then please 1st download it.
Download Adobe Reader

February 22, 2011

Solution Manual of Elementary Linear Algebra by Anton and Rorres


Elementary Linear Algebra with Applications
Elementary Linear Algebra with
Applications
Book Name: Elementary Linear Algebra with Applications
Author Name: Howard Anton and Chris Rorres
Edition: 9th Edition
Type: Solution Manual

Download Solution Manual here.
Download

Its in PDF format if you don't have Adobe Reader then please 1st download it.
Download Adobe Reader 
 
Elementary Linear Algebra 10th edition gives an elementary treatment of linear algebra that is suitable for a first course for undergraduate students.  The aim is to present the fundamentals of linear algebra in the clearest possible way; pedagogy is the main consideration.  Calculus is not a prerequisite, but there are clearly labeled exercises and examples (which can be omitted without loss of continuity) for students who have studied calculus.   Technology also is not required, but for those who would like to use MATLAB, Maple, or Mathematics, or calculators with linear algebra capabilities, exercises are included at the ends of chapters that allow for further exploration using those tools.

February 12, 2011

Thomas Calculus by Thomas 11th Edition

Thomas' Calculus
Thomas' Calculus
Book Name: Thomas' Calculus
Author Name: Maurice D. Weir, Joel R. Hass, Frank R. Giordano
Edition: 11th Edition
ISBN: 0321185587, 9780321185587
Publishers: Addison-Wesley Longman, Incorporated, 2005
Type: Ebook

Download Ebook here.
Download 
11th Edition Solution Manual is also along this File

Its in PDF format if you don't have Adobe Reader then please 1st download it.
Download Adobe Reader 
Any issue or confusion??? Drop a comment below in comment box or contact us on Facebook.

To Prevent Mediafire Ads Download AdBlock Plus
For ChromeInstall
For MozillaInstall 
Description:

The new edition of Thomas is a return to what Thomas has always been: the book with the best exercises. For the 11th edition, the authors have added exercises cut in the 10th edition, as well as, going back to the classic 5th and 6th editions for additional exercises and examples.

The book's theme is that Calculus is about thinking; one cannot memorize it all. The exercises develop this theme as a pivot point between the lecture in class, and the understanding that comes with applying the ideas of Calculus.

In addition, the table of contents has been refined to match the standard syllabus. Many of the examples have been trimmed of distractions and rewritten with a clear focus on the main ideas. The authors have also excised extraneous information in general and have made the technology much more transparent.

The ambition of Thomas 11e is to teach the ideas of Calculus so that students will be able to apply them in new and novel ways, first in the exercises but ultimately in their careers. Every effort has been made to insure that all content in the new edition reinforces thinking and encourages deep understanding of the material.


Table of Contents:
1. Preliminaries:
Real Numbers and the Real Line.
Lines, Circles, and Parabolas.
Functions and Their Graphs.
Identifying Functions; Mathematical Models.
Combining Functions; Shifting and Scaling Graphs.
Trigonometric Functions.
Graphing with Calculators and Computers.

2. Limits and Derivatives:
Rates of Change and Limits.
Calculating Limits Using the Limit Laws.
Precise Definition of a Limit.
One-Sided Limits and Limits at Infinity.
Infinite Limits and Vertical Asymptotes.
Continuity.
Tangents and Derivatives.

3. Differentiation:
The Derivative as a Function.
Differentiation Rules.
The Derivative as a Rate of Change.
Derivatives of Trigonometric Functions.
The Chain Rule and Parametric Equations.
Implicit Differentiation.
Related Rates.
Linearization and Differentials.

4. Applications of Derivatives:
Extreme Values of Functions.
The Mean Value Theorem.
Monotonic Functions and the First Derivative Test.
Concavity and Curve Sketching.
Applied Optimization Problems.
Indeterminate Forms and L'Hopital's Rule.
Newton's Method.
Antiderivatives.

5. Integration:
Estimating with Finite Sums.
Sigma Notation and Limits of Finite Sums.
The Definite Integral.
The Fundamental Theorem of Calculus.
Indefinite Integrals and the Substitution Rule.
Substitution and Area Between Curves.

6. Applications of Definite Integrals:
Volumes by Slicing and Rotation About an Axis.
Volumes by Cylindrical Shells.
Lengths of Plane Curves.
Moments and Centers of Mass.
Areas of Surfaces of Revolution and The Theorems of Pappus.
Work.
Fluid Pressures and Forces.

7. Transcendental Functions:
Inverse Functions and their Derivatives.
Natural Logarithms.
The Exponential Function.
ax and loga x.
Exponential Growth and Decay.
Relative Rates of Growth.
Inverse Trigonometric Functions.
Hyperbolic Functions.

8. Techniques of Integration:
Basic Integration Formulas.
Integration by Parts.
Integration of Rational Functions by Partial Fractions.
Trigonometric Integrals.
Trigonometric Substitutions.
Integral Tables and Computer Algebra Systems.
Numerical Integration.
Improper Integrals.

9. Further Applications of Integration:
Slope Fields and Separable Differential Equations.
First-Order Linear Differential Equations.
Euler's Method.
Graphical Solutions of Autonomous Equations.
Applications of First-Order Differential Equations.

10. Conic Sections and Polar Coordinates:
Conic Sections and Quadratic Equations .
Classifying Conic Sections by Eccentricity.
Quadratic Equations and Rotations.
Conics and Parametric Equations; The Cycloid.
Polar Coordinates .
Graphing in Polar Coordinates.
Area and Lengths in Polar Coordinates.
Conic Sections in Polar Coordinates.

11. Infinite Sequences and Series:
Sequences.
Infinite Series.
The Integral Test.
Comparison Tests.
The Ratio and Root Tests.
Alternating Series, Absolute and Conditional Convergence.
Power Series.
Taylor and Maclaurin Series.
Convergence of Taylor Series; Error Estimates.
Applications of Power Series.
Fourier Series.

12. Vectors and the Geometry of Space:
Three-Dimensional Coordinate Systems.
Vectors.
The Dot Product.
The Cross Product.
Lines and Planes in Space.
Cylinders and Quadric Surfaces .


13. Vector-Valued Functions and Motion in Space:
Vector Functions.
Modeling Projectile Motion.
Arc Length and the Unit Tangent Vector T.
Curvature and the Unit Normal Vector N.
Torsion and the Unit Binormal Vector B.
Planetary Motion and Satellites.

14. Partial Derivatives:
Functions of Several Variables.
Limits and Continuity in Higher Dimensions.
Partial Derivatives.
The Chain Rule.
Directional Derivatives and Gradient Vectors.
Tangent Planes and Differentials.
Extreme Values and Saddle Points.
Lagrange Multipliers.
*Partial Derivatives with Constrained Variables.
Taylor's Formula for Two Variables.

15. Multiple Integrals:
Double Integrals.
Areas, Moments and Centers of Mass*.
Double Integrals in Polar Form.
Triple Integrals in Rectangular Coordinates.
Masses and Moments in Three Dimensions.
Triple Integrals in Cylindrical and Spherical Coordinates.
Substitutions in Multiple Integrals.

16. Integration in Vector Fields:
Line Integrals.
Vector Fields, Work, Circulation, and Flux.
Path Independence, Potential Functions, and Conservative Fields.
Green's Theorem in the Plane.
Surface Area and Surface Integrals.
Parametrized Surfaces.
Stokes' Theorem.
The Divergence Theorem and a Unified Theory.

Appendices:
Mathematical Induction.
Proofs of Limit Theorems.
Commonly Occurring Limits .
Theory of the Real Numbers.
Complex Numbers.
The Distributive Law for Vector Cross Products.
Determinants and Cramer's Rule.
The Mixed Derivative Theorem and the Increment Theorem.
The Area of a Parallelogram's Projection on a Plane.